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SUMMARY

We de�ne the reference interval as the range between the 2.5th and 97.5th percentiles of a random
variable. We use reference intervals to compare characteristics of a marker of disease progression
between a�ected populations. We use a tolerance interval to assess uncertainty in the reference interval.
Unlike the tolerance interval, the estimated reference interval does not contains the true reference interval
with speci�ed con�dence (or credibility). The tolerance interval is easy to understand, communicate and
visualize. We derive estimates of the reference interval and its tolerance interval for markers de�ned by
features of a linear mixed model. Examples considered are reference intervals for time trends in HIV
viral load, and CD4 per cent, in HIV-infected haemophiliac children and homosexual men. We estimate
the intervals with likelihood methods and also develop a Bayesian model in which the parameters are
estimated via Markov-chain Monte Carlo. The Bayesian formulation naturally overcomes some important
limitations of the likelihood model. Published in 2005 by John Wiley & Sons, Ltd.

KEY WORDS: reference interval; tolerance interval; Bayesian statistics; linear mixed models; growth
curves

1. INTRODUCTION

A 100� per cent reference interval is the range between the 100(1 − �)=2 and 100(1 + �)=2
percentiles of a random variable in a population; for concreteness this paper sets �=0:95. This
interval contains the bulk of the population values and thereby characterizes the typical range
of values likely to be observed. Reference intervals are widely used in medicine. For example,
a reference interval for blood haemoglobin concentration in newborn infants is 155–232 g=L
[1]. Ninety-�ve per cent of newborns’ haemoglobin concentrations are expected to fall within
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this range. Reference intervals plotted over time de�ne a growth curve. Paediatricians use
growth curves for height and weight to ‘track’ young children’s development [2]. There is a
large literature on reference intervals, reviewed in Reference [3].
Uncertainty in a reference interval estimate can be summarized by an interval that com-

pletely covers the true reference interval with 95 per cent con�dence (or Bayesian credibility).
This interval is a type of tolerance interval [4]. For newborn haemoglobin concentrations, we
compute an approximate frequentist tolerance interval of 149–240 g=L, using methods de-
scribed in Section 4.2. Thus, the true reference interval lies completely within this tolerance
interval with 95 per cent con�dence.
Reference intervals are used clinically to identify atypical values that require further in-

vestigation. For clinical usage, the reference interval endpoints must be estimated precisely.
Uncertainty in the endpoints can be assessed by separate con�dence intervals for the lower
and upper limits. If these con�dence intervals are ‘su�ciently small’, the uncertainty is con-
sidered ignorable [5]. Thus, clinical application requires that a reference interval be estimated
from su�ciently large sample sizes. In these applications, the estimated reference interval may
make use of sophisticated transformations to normality, or semi-parametric and non-parametric
methods [3]. In these applications, the marker values for which reference intervals are sought
are observed directly for each individual.
In this paper, we consider a di�erent situation. We use reference intervals to characterize

how a disease process di�ers between two a�ected populations. If the reference intervals
for the two populations are markedly di�erent, the disease processes may also be di�erent
for the two populations. We are interested in reference intervals for inferred markers, rather
than directly observed ones, namely the subject-speci�c intercepts and slopes of a linear mixed
model. The error in inferring the markers must be accounted for by the reference and tolerance
interval estimates. In addition, in our applications we have small samples, so that accurate
assessment of uncertainty in the reference interval estimates is challenging.
In this setting, a two-sample t-test may not accurately gauge the di�erences between the

distributions of the intercepts and slopes. These markers are not directly observed for each
subject, but are estimated from limited data. Furthermore, the t-test assesses the di�erences
between means, but we are also interested in di�erences between the variances in the two
populations. Instead, the reference interval provides a comprehensive measure that re�ects
the mean and variance of the distribution. Reference intervals from two populations may be
disjoint, nested, or partly overlap, and these patterns are of interest. Also, subjects in a cohort
with viral loads outside the reference interval may warrant special study.
We derive frequentist and Bayesian estimates of the reference interval, and its tolerance

interval, that take the error in inferring the markers into account. The Bayesian model uses
non-informative priors for the parameters. Although it is di�cult to deal with small samples
from a frequentist perspective, this is not a technical issue for the Bayesian method. In
addition, the Bayesian method remains valid when the maximum likelihood estimates of the
parameters fall on the boundary of the parameter space.

2. MOTIVATION: HIV INFECTION IN ADULTS VS CHILDREN

Human immunode�ciency virus (HIV) viral load is a measure of HIV replication and is used
clinically to gauge prognosis and monitor therapy. HIV viral load is de�ned as the log10 of the
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number of HIV virus copies per mL of serum or plasma. The time-course of HIV viral load
values di�ers between persons who acquire the infection as adults and infants who acquire the
infection perinatally. Among untreated HIV-infected adults, early viral loads (measured 12–36
months after seroconversion) are typically 3.00–4.00 log10 copies=ml [6]. Viral loads tend to
increase slowly over time, although adults vary in their rates of change [7]. In contrast to
adults, perinatally infected infants have higher early viral loads, and unlike adults, their viral
loads gradually decline from these early values [8].
In a previous paper, we studied typical time trends in HIV viral load among children with

haemophilia who contracted HIV from HIV-infected blood products [9]. The time-course of
viral loads in these children is of interest because they acquired the infection at an age
intermediate between populations of perinatally infected infants and adults. In the Multicenter
Haemophilia Cohort Study [10], we identi�ed 22 haemophiliacs who became infected between
the ages of 0.7 and 5.2 years. Here we contrast the viral loads observed in these children
with those from a cohort of 111 homosexual men from the District of Columbia Gay cohort
study who acquired infection as adults [11]. The data were collected prior to the availability
of e�ective therapy; thus the observed trends re�ect the natural history of the infection.
A widely used approximation postulates that after 2 years, the mean HIV viral loads within

a subject usually reach a stable point after which it progresses linearly over time, so that
the intercept and slope characterize the course of infection [7]. We represent the intercept as
viral load at 2 years post-seroconversion, and the slope as the yearly change in viral load.
Any di�erence in the distributions of intercepts and slopes between populations may re�ect
di�erences in the natural history of infection.

3. REFERENCE INTERVALS AND THE LINEAR MIXED MODEL

If the markers are directly observed, the reference interval is readily constructed using the
estimated 2.5th and 97.5th quantiles. This can be done non-parametrically with order statistics
or by using a parametric model.
But our markers are the intercepts and slopes of a linear mixed model described below,

and these parameters are estimated from limited data. Figure 1 shows viral load trends in
four selected HIV-infected children. The single black line in each panel of Figure 1 is the
subject-speci�c regression line. Each subject has potentially di�erent intercepts and slopes, so
we use the standard linear mixed model [12].
We model subject i’s HIV viral load levels at time t as yit , and denote the corresponding

measurement time with origin set to 2 years after seroconversion as xit . Then

yit =�0i + xit�1i + �it (1)

where �0i ∼N(�0; �20 ) and �1i ∼N(�1; �21 ), which are independent of the (�i1; : : : ; �in) that are
normally distributed with mean zero and variance �2� and the covariance between two times
s and t is �2� �

d(s; t) for d(s; t)= |xis − xit |. The correlation between �0i and �1i is �01. The
parameter �0i represents the subject-speci�c HIV viral load at 2 years after seroconversion.
The parameter �1i represents the subject-speci�c rate of change of HIV viral load per year.
We want to construct reference intervals for these two parameters.
The variance components �0; �1; �01; ��; � can be estimated with restricted maximum like-

lihood (REML). The variance component estimates are then used to obtain weighted least
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Figure 1. Viral load measurements for four representative HIV-infected children. The thick line is the
population average line (the �xed-e�ects), the thin solid lines are the child-speci�c regressions, and the

dotted lines are the mixed-e�ects lines.

squares estimates for the �xed e�ects �0; �1. This model can be �t by SAS PROC MIXED [13].
Figure 1 displays the �xed-e�ect line and mixed-e�ects lines for four children.
The model-based reference intervals for �0i and �1i are

(�j − 1:96�j; �j + 1:96�j); j=0; 1 (2)

These intervals are estimated by plugging in estimates of each parameter. These are not
con�dence intervals; �j is the population standard deviation, rather than the standard error of
�̂j. From here on, when we consider reference intervals in general, we drop the subscripts
on � and �.

4. TOLERANCE INTERVALS FOR REFERENCE INTERVALS

We de�ne the tolerance interval as an interval that completely covers our true reference
interval with 95 per cent con�dence (or Bayesian credibility). Our tolerance interval is a
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random interval [l; u] such that

P (FL(l)60:025∩FU(u)¿0:975)¿0:95 (3)

where FL; FU are the cumulative distribution functions of the lower and upper ends of the
reference interval, respectively. This is akin to a (95 per cent, 95 per cent) �-content tolerance
interval (see Reference [4, p. 334]), except that our tolerance interval must cover the 2.5th
and 97.5th percentiles (i.e. our reference interval, not just any 95 per cent reference interval).
The tolerance interval provides inference on the true reference interval akin to those provided
by a con�dence (or credible) interval for a parameter.

4.1. Other measures of uncertainty for reference intervals

Con�dence intervals for the lower and upper limits are often used to assess uncertainty in
the reference interval. But these do not make any direct inference on the location and size
of the true reference interval. Thus it may be hard to interpret con�dence intervals on each
endpoint of the interval, especially if they overlap. Another measure of uncertainty is a two-
dimensional con�dence region for the reference interval endpoints. Although a con�dence
region makes direct inference on the reference interval, it may be di�cult for researchers to
easily interpret and communicate general con�dence regions. In contrast, the interpretation and
communication of tolerance intervals is more straightforward. Merely comparing two reference
intervals by testing their endpoints for equality does not yield any information about where
the true reference intervals may lie.
Measures of uncertainty are important because the reference interval estimate does not

contain the true reference interval with controllable con�dence. Thus the reference interval
estimate cannot be used to make inference about the true reference interval. Denote the event
that the estimated reference interval covers the true reference interval as Cover. Then the
coverage probability of the estimated reference interval is

P(Cover) = P(Cover|�̂ − �¿0)P(�̂ − �¿0) + P(Cover|�̂ − �¡0)P(�̂ − �¡0)

= P(Cover|�̂ − �¿0)P(�̂ − �¿0)

because P(Cover|�̂ − �¡0)=0. This coverage probability cannot be controlled a priori. In
large samples, often median(�̂) ≈ � and thus the coverage probability is bounded by 0:5.
In the extreme case when � is known and only �̂ varies, then the coverage probability is
exactly zero. This occurs because if the estimated reference interval covers one of the true
reference interval endpoints, then unless �̂=� exactly, the interval cannot cover the other
endpoint. This shortcoming is addressed by the tolerance interval; the tolerance interval is the
appropriate widening of the estimated reference interval so as to ensure a controlled probability
of containing the true reference interval.

4.2. Approximate frequentist estimation of the tolerance interval

We �rst consider asymptotic two-sided tolerance intervals of the form(
�̂ − 1:96�̂ − c

√
Var(�̂ − 1:96�̂); �̂+ 1:96�̂+ c

√
Var(�̂+ 1:96�̂)

)
(4)
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for some critical value c that controls the coverage. We estimate Var(�̂± 1:96�̂) as
Var(�̂± 1:96�̂)=Var(�̂) + 3:84Var(�̂) (5)

since under REML Cov(�̂; �̂)→ 0 [14]. Computationally, SAS PROC MIXED [13] only pro-
vides Var(�̂2), but by the delta-method [15], Var(�̂) ≈ (2�̂)−2Var(�̂2).
It is not obvious which choice of c gives the tolerance interval 95 per cent coverage, even

under assumptions of asymptotic normality and known variances of �̂; �̂. For example, if
Var(�̂)=0, then the reference interval reduces to a con�dence interval for �̂, and the usual
c=1:96 is the appropriate choice. But if Var(�̂)=0, then the reference interval covers both
endpoints or neither, so the reference interval becomes a one-sided con�dence interval for
�̂, and thus c=1:645 is the appropriate choice. To ensure at least 95 per cent asymptotic
coverage, we set c=1:96.
The asymptotic tolerance interval has several shortcomings. First, it does not account for

�nite sample size. Second, it relies on asymptotic normality of �̂; �̂ which may be a poor
approximation since the distribution of �̂ is truncated at zero and potentially has a long right
tail. Finally, this tolerance interval will be asymptotically invalid if �̂=0. Indeed, if �̂=0,
then the reference interval estimate is degenerate and collapses to a point. A priori, the true �
is unlikely to be zero, and we would like to incorporate this incontroversial prior information
into our modelling. In the next section, we develop a Bayesian approach that overcomes these
limitations.

5. BAYESIAN FORMULATION

We start with the mixed model of Section 3 and propose reasonable prior beliefs on the
parameters �0; �1; �0; �1; �01; � de�ned in equation (1). When �̂=0, the Bayesian approach
produces non-degenerate reference interval and valid tolerance interval estimates. Furthermore,
the Bayesian tolerance interval naturally takes �nite-sample uncertainty into account, thus it
does not rely on asymptotics nor on the need to specify a critical value c. The Bayesian
approach �ows from specifying a likelihood function and prior beliefs on the parameters.

5.1. Choice of likelihood

Our likelihood is the standard normal likelihood on the �xed e�ects given the variance com-
ponents, combined with REML for the variance components, yielding

L(�; �; �|y)∝L(�|�; �; y)×L(�; �|y) (6)

where �=[�0; �1] and �=[�0; �1; �01; ��] are vector parameters and y is the vector of observed
outcomes. Here

L(�|�; �; y)∝N (�; (X ′V−1X )−1) (7)

where X is the design matrix of covariates for �xed e�ects (X ′ is its transpose). The variance–
covariance matrix of y is

V =V (�; �; y)=XGX ′ + R
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where G=G(�0; �1; �01) is the covariance matrix of the random e�ects, and R=R(��; �) is
the covariance matrix of the errors.
We use the standard REML log-likelihood for the variance components [16]. Using the

notation of SAS PROC MIXED [13]:

l(�; �|y)∝ log |V |+ log |X ′V−1X |+ (r′V−1r) (8)

where

r = y − X �̂

�̂= (X ′V−1X )−1X ′V−1y

and |·| denotes the determinant.
This likelihood is the generally recommended frequentist approach to estimating linear

mixed models [17]. An alternative is to use a full normal likelihood, thereby estimating �; �
and � jointly. Indeed, Bayesian estimation from the full likelihood is usually easier to compute.
However, REML takes account of the implicit degrees of freedom associated with the �xed
e�ects �, while the full likelihood does not [17]. Thus REML often produces more reliable
small-sample estimates of the variance components � and �.

5.2. Choice of priors and estimation

Since relatively little is known about the time course of HIV viral load in children, we only
consider non-informative priors. We consider the priors on each of �0; �1; �; �0; �1; �01; �� to
be independent. Although independent priors on intercepts and slopes is a reasonable approx-
imation in our situation, it may not be reasonable in general. However, independent priors on
the intercepts and slopes still allows correlated posteriors.
For �xed e�ects �, we use an improper �at prior. Although this prior is improper, it is

considered a reasonable choice because combining data over subjects should be informative
about � (see Section 5.4 of Reference [18]) and the posterior for � will be proper. For � and
�01, we use proper non-informative �at priors on the interval [−1; 1] [19]. For the variances
�, we use an improper �at prior. This prior yields proper posterior in this situation [18].
However, a totally �at prior can be unreasonable, and there is no consensus choice of non-
informative priors for variances. In Appendix A, we evaluate other priors for � to assess the
sensitivity of the results.
Denoting a chosen prior on � as �(�) and denoting the full posterior as P, the posterior

distribution is

P(�; �; �|y)∝L(�|�; �; y)L(�; �|y)�(�) (9)

The posterior distribution does not have a closed form, thus Markov-chain Monte Carlo
(MCMC) techniques [19] must be used to draw samples (�(i); �(i); �(i)) from it. Details of
this method are available upon request.
The Bayesian reference interval is estimated by plugging in the posterior mean of �; � into

equation (2). The posterior mean of �; � is estimated by taking the average of (�(i); �(i)).
Each draw has a corresponding drawn reference interval of (�(i) − 1:96�(i); �(i) + 1:96�(i)).
The Bayesian tolerance interval takes the form of a highest posterior density interval, so
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that it is the smallest interval covering 95 per cent of the drawn reference intervals; see
Reference [20] who uses the same procedure but restricts consideration to tolerance intervals
symmetric around the posterior means.

6. APPLICATION TO HIV REFERENCE INTERVALS

The model of Section 3 was �t with SAS PROC MIXED [13]. In our data, allowing corre-
lation between intercept and slope does not change the other parameter estimates by much,
a likelihood-ratio test for it is insigni�cant, and the slopes and intercepts estimated from
child-speci�c linear regressions are uncorrelated. Thus we set �01 = 0 in this application.
The results are in Table I. Men and children have similar mean viral load at 2 years after

seroconversion, 4:4 log10 copies=ml. The men may have more variation around that mean
(�20 = 0:3 versus 0.1). Children have a higher mean annual increase in viral load (�1 = 0:03
versus 0.001) but the men may have more variation about their mean (�21 = 0:004 versus
0.002).
Table II shows reference intervals and their associated tolerance intervals estimated using the

REML approach, and the Bayesian approach with �at priors on all parameters. The reference
interval for the viral load intercept in children nests inside the corresponding reference interval
for the men by nearly one-half log10 on each side. Since one-half log10 is a factor of 3 on
the natural scale, the children appear to have much less variation in their initial viral loads
than the men. But the reference intervals are estimated with error, and the e�ect of this error
is assessed by the tolerance interval. The children’s asymptotic REML tolerance interval is
almost identical to that for the men, while the Bayesian tolerance interval for the children is
slightly wider than that of the men. Thus, although it appears that children have less variation

Table I. Parameter estimates from usual REML analysis, standard errors in parentheses.

Cohort �0 �1 �20 �21 � �2�

Children viral load 4.4(0.01) 0.03(0.02) 0.1(0.1) 0.002(0.002) 0.3(0.1) 0.6(0.1)
Men viral load 4.4(0.06) 0.001(0.001) 0.3(0.06) 0.004(0.001) 0.3(0.05) 0.4(0.03)
Children CD4 per cent 31(1) −2(0.3) 0(none) 0.5(0.3) 0.3(0.06) 67(8)

Table II. Reference intervals (RI) and tolerance intervals (TI) for the children
and for the men for viral load. Bayesian priors are �at on all parameters.

Cohort REML RI Asymptotic TI Bayesian RI Bayesian TI

Viral load intercepts
Children (3:8; 5:0) (3:1; 5:7) (3:6; 5:2) (2:9; 5:9)
Men (3:4; 5:5) (3:2; 5:7) (3:5; 5:4) (3:2; 5:7)

Viral load slopes
Children (−0:07; 0:12) (−0:17; 0:23) (−0:10; 0:17) (−0:21; 0:30)
Men (−0:12; 0:12) (−0:17; 0:17) (−0:12; 0:13) (−0:16; 0:20)
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Table III. Reference intervals (RI) and tolerance intervals (TI) for the
children CD4 per cent. Bayesian priors are �at on all parameters.

Parameter REML RI Asymptotic TI Bayesian RI Bayesian TI

Children CD4 per cent
Intercept (31; 31) (28; 34) (25; 38) (17; 47)
Slope (−3:1;−0:4) (−3:9; 0:5) (−3:8; 0:06) (−5:4; 1:5)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2.5

3

3.5

4

4.5

5

5.5

6

6.5

Years since Seroconversion

H
IV

 V
ira

l L
oa

d

Growth Curve 

REML RI 

Bayesian RI 
Bayesian TI 

REML TI

Figure 2. Growth curve, reference intervals (RI) and tolerance intervals (TI) for HIV viral load in
haemophiliac children. Bayesian priors are �at on all parameters.

in their initial viral loads than men, there is too much error in the estimates to be sure.
Viral load slopes are uncertain in both groups, both for the mean slopes (which do not di�er
signi�cantly from zero) and for the distribution of subject-speci�c slopes. For the children’s
data, the tolerance intervals are much wider than the corresponding reference intervals because
our data are limited to 22 children. Since there are 111 men in the adult data, their tolerance
intervals are relatively close to their corresponding reference intervals.
We also �t linear mixed models to data on the percentage of lymphocytes that were CD4

positive (CD4 per cent) over time in the same 22 children. CD4 per cent is a marker of
immune function. As shown in Table I, the CD4 per cent data produce a zero-estimated
variance component for the intercept. As discussed in Section 4, an estimated variance of
zero yields invalid reference and tolerance intervals using the REML approach. The Bayesian
approach yields reasonable valid intervals. In Table III, the REML reference interval for the
intercept degenerates to (31; 31) while the Bayesian estimate is (25; 38).
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We plotted reference intervals and tolerance intervals of marker values versus years since
seroconversion, yielding a growth curve. Viral load trends in children, as a function of time
since seroconversion, are shown in Figure 2. The tolerance intervals are substantially wider
than the reference intervals. The Bayesian tolerance intervals appear somewhat irregular due
to the discreteness of the MCMC-generated posterior distribution. Details on the computation
of growth curve reference intervals and tolerance intervals are presented in Appendix B.

7. DISCUSSION

Reference intervals are useful for comparing characteristics of disease progression between
a�ected populations. We have presented methodology for assessing and conveying uncertainty
in reference intervals using tolerance intervals. Other methods of assessing uncertainty, such
as a con�dence region for the endpoints can be di�cult to visualize and communicate. Sep-
arate con�dence intervals for each endpoint make no inference on the true reference interval.
Although the di�erence between two reference intervals can be assessed by tests of equality
on their endpoints, a tolerance interval is needed to determine what other reference intervals
could be compatible with the data, or whether a subject with outlying marker values is truly
outside reference limits. Our main objectives were to compute reference and tolerance inter-
vals when the markers of interest are inferred with error, to handle a zero-estimated variance
component and to account for small-sample variability. Although a frequentist approach can
be workable, and a more sophisticated frequentist approach such as a pro�le likelihood esti-
mate of the upper con�dence limit on the variance could work, a Bayesian approach utilizing
non-informative priors satis�es all these objectives. Standard MCMC methods quickly yield
the Bayesian intervals.
The tolerance interval has been proposed for medical applications where marker values are

directly observable [21]. Tolerance intervals for indirectly observable marker values have been
considered in the quality control literature. Useful approximate frequentist tolerance interval
estimates can be derived [22]. However, these estimates can only be extended to the situation
of a zero-estimated variance component by replacing it with its upper bound from a suitably
chosen con�dence interval. Although advice on choosing the frequentist coverage level has
been presented [22], the presence of a zero-estimated variance component remains a source of
di�culty. In addition, this upper bound is not computed by SAS PROC MIXED. A Bayesian
approach similar in spirit to ours has also been proposed in the quality control literature [20].
Our example is in a biological setting with unbalanced data, correlated errors and includes a
slope parameter in the model.
In the viral load example, the intercept reference interval for the children nested inside

that of the homosexual men, suggesting that children’s viral loads 2 years after serocon-
version have less variation. However, the tolerance intervals for both groups were virtually
identical; there is too much uncertainty to draw solid conclusions. The tolerance intervals
for the men are nearly identical using both approaches, suggesting that both the frequentist
and Bayesian tolerance intervals may agree in su�ciently large samples. For the children, the
Bayesian tolerance intervals are wider than the asymptotic REML tolerance intervals, because
the Bayesian intervals account for the small sample size. In the CD4 per cent example, there is
a zero-estimated variance component. The frequentist approach does not produce meaningful
reference or tolerance intervals, but the Bayesian approach does.
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The standard linear mixed-e�ects model relies heavily on its distributional assumptions.
The normal distribution assumptions must be checked, perhaps via normal QQ-plots of the
estimated residuals and random e�ects, and assumptions on the residuals checked via resid-
uals versus �tted plots [23]. Assuming homoscedastic errors across subjects requires critical
examination [23]. Other important issues are potential informative censoring of viral load
measurements by death and potential left-censored viral load measurements [24].
The tolerance interval provides a useful assessment of uncertainty in reference interval esti-

mates, and we believe it should be routinely calculated. The approximate frequentist tolerance
interval is easy to compute, but should be used cautiously in small samples, and avoided
altogether in case of a zero-estimated variance component. The Bayesian approach appears
to be valid in all circumstances. In our application a �at improper prior on the variances is
adequate, but we recommend truncating the prior at a reasonable value to exclude impossibly
large variances from consideration. In addition, truncation will often stabilize the estimate and
improve the convergence of the MCMC. If there is limited prior information, a sensitivity
analysis to a variety of non-informative priors is also good practice.
Ultimately, our methods could be used clinically, but much work is required to validate

them and convince clinicians of their utility. Astute clinicians consider trends in markers and
make clinical judgements. But information gained from formal analysis of real-time patient
data might improve patient outcomes. Our methods may apply in other settings where dis-
ease markers are measured over time, e.g. screening for prostate cancer with prostate-speci�c
antigen or ovarian cancer with CA125.

APPENDIX A: SENSITIVITY TO PRIORS ON VARIANCES

There is no consensus on non-informative priors for variances. The priors on �0; �1; � will al-
ways be �at as we vary the priors on �0; �1; ��. All priors are independent and parameterized as
in Appendix A of Reference [19]. Since we set �01 = 0 in our application, we do the same here.
Table A1 shows the reference intervals and tolerance intervals as estimated with each prior.
The �rst line is the improper �at prior used in the analysis of Section 6. The second line is

truncates the �at prior at a prior agreed upon maximums of 1; 0:5; 2 for �0; �1; ��, respectively.
This is guaranteed to produce a proper prior and yields the same results as the �at prior. The
third line is the Je�reys prior which is f(�2)∝ 1=�2. If the data were balanced, this prior
would lead to a proper posterior [25]. Due to lack of balance, this prior yields an improper

Table A1. Sensitivity of reference intervals (RI) and tolerance intervals (TI) for the children to di�ering
priors on the variance components.

Prior Intercept RI Intercept TI Slope RI Slope TI

Flat (3:6; 5:2) (2:9; 5:9) (−0:10; 0:17) (−0:21; 0:30)
Truncated �at(1; 0:5; 2) (3:6; 5:2) (2:9; 5:7) (−0:10; 0:17) (−0:22; 0:29)
Je�reys (3:9; 4:9) (3:2; 5:6) (−0:05; 0:11) (−0:22; 0:30)
IG(0:5; 0:1)*IG(0:01; 1)*IG(1; 1) (3:5; 5:3) (3:0; 5:8) (−0:09; 0:16) (−0:17; 0:25)
IG(0:5; 0:1)*IG(0:1; 1)*IG(1; 1) (3:5; 5:2) (3:0; 5:7) (−0:21; 0:30) (−0:31; 0:42)
Gam(1; 1)*Gam(1; 1)*Gam(1; 1) (3:6; 5:2) (2:9; 5:9) (−0:10; 0:16) (−0:21; 0:28)
Gam(0:75; 1:33)*Gam(0:75; 0:5)*Gam(1; 1) (3:6; 5:2) (2:9; 5:9) (−0:09; 0:16) (−0:21; 0:30)
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posterior in �0 and �1 with in�nite mass around zero [18]. The resulting intervals are too
short. Reassuringly, the improper posterior is easily diagnosed by the MCMC because the
chain gets stuck at a point near zero for as many as a thousand iterations.
The fourth and �fth lines are inverse gamma (IG) priors on each of �0; �1; ��. The only

di�erence between the two lines is the prior of the slope variance �1, whose variance is always
one but the mean in the fourth line is 0.01 (closer to the REML value) and in the �fth line
is 0.1 (far from the REML value). Although these priors are vague, the estimated intervals
di�er. The problem is that the IG has zero density at zero, thus a ‘vague’ IG achieves high
variance by removing mass near zero and concentrating that mass far from zero. This IG is
‘concentrated’ yet ‘di�use’ and places little mass near zero. Thus the second IG strongly pulls
the estimate away from zero and thus cannot be considered non-informative.
The last two lines are two gamma (Gam) priors. Crucially, the Gam is �exible near zero as

it can have in�nite, �nite or zero density at zero. The �rst choice of Gam is just a exponential
distribution with unit mean on all parameters. The second Gam has in�nite density at zero (but
is proper), huge prior means of 1; 0:375; 1 for �0; �1; ��, respectively and has large variance.
In spite of the fact that the prior means are far from the REML estimates, both priors lead
to estimated intervals that are virtually identical to those from the �at prior. Thus use of the
�at prior is justi�ed as it yields intervals that agree with those from a range of reasonable
non-informative priors.
We caution that although the Bayesian approach remains feasible when a variance com-

ponent is estimated to be zero, the likelihood may have little information about the variance
component [26]. Thus special care must be taken with the choice of prior, and we strongly
recommend a sensitivity analysis akin to this appendix.

APPENDIX B: REFERENCE INTERVALS AND TOLERANCE INTERVALS
FOR A GROWTH CURVE

The asymptotic REML and Bayesian reference intervals for each time xit has endpoints

�0 + �1xit ± 1:96
√
�20 + �

2
1x
2
it (B1)

The REML estimate plugs in its parameter estimates. The Bayesian estimate plugs in the
posterior mean for each parameter.
The Bayesian tolerance interval for each xit is easily computed by plugging in each MCMC

draw into equation (B1) and then computing the smallest interval completely covering
95 per cent of these intervals [20]. The endpoints of the asymptotic REML tolerance in-
tervals are

�̂0 + �̂1xit ± 1:96
√
�̂20 + �̂

2
1x2it ± c

√
Var

(
�̂0 + �̂1xit ± 1:96

√
�̂20 + �̂

2
1x2it

)

for some critical value c that we set at 1.96 (see Section 4). We estimate Var(�̂0 + �̂1xit ±
1:96

√
�̂20 + �̂

2
1x2it) using the delta-method [15] as

xTV�x + 3:84gTV�2g
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where x=[1 xit]T; V� is the variance–covariance matrix of the �̂0; �̂1 estimates, V�2 is the
variance–covariance matrix of the �̂20; �̂

2
1 estimates and g is the vector

1
2 (�̂

2
0 + �̂

2
1x
2
it)

−1=2 × [1 x2it]T

The matrices V�; V�2 are output by SAS PROC MIXED, so this calculation can easily be
done. However, if either of �̂0; �̂1 are zero, then as mentioned in Section 4 this asymptotic
frequentist tolerance interval is invalid.
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